- PII
- S3034552925040037-1
- DOI
- 10.7868/S3034552925040037
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 4
- Pages
- 241-250
- Abstract
- Nanoparticles contained in airborne aerosols are a significant risk factor and require a comprehensive approach to studying and eliminating the gap in knowledge about interaction with biological media. The aim of the work is to study the dynamics of the interaction of industrial dust with serum proteins and to develop a new, integrated approach to assessing exposure and the impact of environmental components on health. The paper shows the results of studies of the interaction of isolated fractions of industrial dust with a solution of serum albumin using diffraction grating and molecular absorption spectroscopy, and its elemental composition is determined by the ICP-MS method. It was found that after 24 hours of exposure to industrial dust in a protein solution, protein-dust particles agglomerate, followed by their decomposition by 744 hours and the particle size approaches the initial one. An inverse correlation was found between the specific surface area of the particles, their diffusion coefficient and size. The results obtained by the diffraction grating method are in good agreement with the qualitative characteristics obtained by molecular absorption spectroscopy. The ICP-MS method has recorded the complex dynamics of the redistribution of elements between phases over time. An assumption is made about the interaction of the analyzed elements with the protein, leading to the formation of nanoscale aggregates and the binding of metals, which is important for understanding their biological effects. Experimental data can be used to determine the standards of air aerosol pollution.
- Keywords
- наночастица белок коэффициент диффузии удельная поверхность индуцированная решетка пыль горная металлургия
- Date of publication
- 22.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 26
References
- 1. Азаров ВН, Терпишинская НВ, Мариши НА (2012) Нормирование PM и PM как социальные стандарты качества жизни в районах расположения предприятий стройиндустрии. Жилищное строительство 3: 20–22.
- 2. Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T (2023) Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 23: 1059. https://doi.org/10.1186/s12889-023-15958-4
- 3. Ивлиева АЛ, Зиньковская И, Петрицкая ЕН, Рогаткин ДА (2022) Наночастицы и наноматериалы — неизбежные современные токсичные агенты. Обзор. Часть 1. Области применения наночастиц и промышленная нанотоксикология. Экология человека 29: 73–88. https://doi.org/10.17816/humeco10015
- 4. Ermolin MS, Fedotov PS, Dzhenloda RK, Ivanev AI, Burkat TV, Burkat VS (2020) Fractionation, Characterization, and Analysis of Nano- and Microparticles in the Estimation of the Contribution of a Metallurgical Enterprise to the Pollution of Urban Dust. J Anal Chem 75: 1227–1235. https://doi.org/10.1134/S1061934820090105
- 5. Samal P, Satpathy S, Panigrahi LL, Jha S, Arakha M (2025) Exploring the intricacies of protein-nanoparticle interaction and its implications in chronic diseases: a comprehensive review. Nanoscale Horiz 10: 1615–1641. https://doi.org/10.1039/D5NH00076A
- 6. Сокол HB (2006) Оптические свойства растворов белков, содержащих ионы тяжелых металлов: дисс. ... канд. физ.-мат. наук: 03.00.02. — М. 173.
- 7. Tikhonova TN, Petrova GP, Petrusevich VM, Fedorova KV, Kashin VV (2011) Formation of dipole nanoclusters in blood serum protein solutions containing europium and potassium ions. Moscow university physics bulletin 66: 190–195. https://doi.org/10.3103/S0027134911020172
- 8. Gibizova VV, Sergeeva IA, Petrova GP, Priezdiev AV, Khlebtsov NG (2011) Interaction of albumin and γ-globulin molecules with gold nanoparticles in water solutions. Moscow university physics bulletin 66: 449–452. https://doi.org/10.3103/S0027134911050067
- 9. Samsonova YS, Priezdiev AV, Lugovtsov AE, Petrova GP, Gibizova VV, Ye YS, Su TH, Perevedentseva EV, Cheng CL (2012) Investigation of interaction of albumin molecules with diamond nanoparticles in aqueous solutions by dynamic light scattering. Quantum electron 42: 484–489. https://doi.org/10.1070/QE2012v042n06ABEH014903
- 10. Zar'kov SV, Avetisyan YA, Yakunin AN, Meerovich IG, Fixler D, Savitsky AP, Tuchin VV (2021) Interaction of laser radiation and complexes of gold nanoparticles linked with proteins. Quantum electron 51: 52–63. https://doi.org/10.1070/QEL17492
- 11. Рожков СП, Горюнов АС (2017) Структурно-динамические эффекты взаимодействия белка и других биологически значимых молекул с шунгитовым наноуглеродом. Труды Карельского научного центра PAH, серия Экспериментальная биология 5: 33–44. https://doi.org/10.17076/eb450
- 12. Федотов ПС, Ермолин МС, Иванеев AH (2022) Изучение наночастиц городской пыли: новые методы и подходы. Тез. докл. IV съезда аналитиков России, M. C. 42.
- 13. Бржезинский АС, Ермолин МС, Иванеев АИ, Федюнина НН, Федотов ПС (2022) Оценка содержания тяжелых металлов в городской пыли города Москвы и их потенциальной опасности для городских экосистем. Тез. докл. IV съезда аналитиков России, M. C. 49
- 14. Ермолин МС, Иванеев АИ, Федюнина НН, Бржезинский АС, Федотов ПС(2022) Распределение платины и палладия между различными фракциями дорожной пыли. Тез. докл. IV съезда аналитиков России, M. C. 252.
- 15. Коростелев ПП (1962) Приготовление растворов для химико-аналитических работ. M.: AH CCCP.
- 16. Inge A (1978) Characterization of proteins and other macromolecules by agarose gel chromatography. J Chromatogr A 152: 21–32. https://doi.org/10.1016/S0021-9673 (00)85330-3
- 17. Vlasova IM, Kuleshova AA, Vlasov AA, Saletsky AM (2013) Molecular association processes and fluorescent characteristics of nanomarkers of the fluorescent family in solutions of bovine serum albumin. Moscow university physics bulletin. 68: 304–310. https://doi.org/10.3103/S0027134913040097
- 18. Zhil'nikova MI, Shafeev GA, Barmina EV, Kalachev YuL, Uvarov OV (2020) Spectral features of colloidal solutions of elongated gold nanoparticles produced by laser ablation in aqueous solutions. Quantum electron 50: 608612. https://doi.org/10.1070/QEL17218
- 19. Apyari VV, Dmitrienko SG, Gorbunova MV, Furletov AA, Zolotov YuA (2019) Gold and silver nanoparticles in optical molecular absorption spectroscopy. J Anal Chem 74: 21–32. https://doi.org/10.1134/S1061934819010052
- 20. Фукс НА (1955) Механика аэрозолей M.: Издательство AH CCCP
- 21. Gyrylov EI, Nomoev AV (2018) A facility for the production nanoparticles by laser ablation in liquid. Zavod Lab Diagn Mater 84: 41–45. https://doi.org/10.26896/1028-6861-2018-84-9-41-45
- 22. Ершов БГ (2001) Наночастицы металлов в водных растворах: электронные, оптические и каталитические свойства. Российский химический журнал 45: 20–30.
- 23. Zabotnov SV, Kurakina DA, Kashaev FV, Skobelkina AV, Kolchin AV, Kaminskaya TP, Khilov AV, Agtha PD, Sergeeva EA, Kashkarov PK (2020) Structural and optical properties of nanoparticles formed by laser ablation of porous silicon in liquids: perspectives in biophotonics. Quantum electron. 50: 69–75. https://doi.org/10.1070/QEL17208
- 24. Smirnova TD, Danilina TG, Rusanova TY, Simbireva NA (2021) Effect of silver nanoparticles on the fluorescence properties of levofloxacin in the presence of yttrium (III) ions in aqueous and micellar surfactant media. J Anal Chem 76:89–94. https://doi.org/10.1134/S1061934821010147
- 25. Dzherayan TG, Ermolin MS, Vanifalova NG (2020) Effectiveness of the simultaneous application of capillary zone electrophoresis and static light scattering in the study of volcanic ash nano- and submicroparticles. J Anal Chem 75: 67–72. https://doi.org/10.1134/S1061934820010050
- 26. Ivaneev AI, Ermolin MS, Fedotov PS (2021) Separation, characterization, and analysis of environmental nano- and microparticles: state-of-the-art methods and approaches. J Anal Chem 76: 413–429. https://doi.org/10.1134/S1061934821040055