- Код статьи
- 10.31857/S0044452924030082-1
- DOI
- 10.31857/S0044452924030082
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 60 / Номер выпуска 3
- Страницы
- 299-307
- Аннотация
- Проведено исследование особенностей экспрессии кальций-связывающего белка парвальбумина в пояснично-крестцовом отделе спинного мозга новорождённых и взрослых кошек. В отличие от взрослых животных, у новорожденных иммуномечение к парвальбумину выявлено главным образом в афферентных волокнах, расположенных в дорзальных рогах и медиальной части промежуточного серого вещества. Локализация этих волокон частично повторяет положение ядер Кларка, но не ограничена их классическими границами, охватывая всю протяжённость поясничного отдела и переходя в предполагаемое ядро Штиллинга, расположенное в крестцовом отделе. Таким образом, парвальбумин-иммунопозитивные проприоцептивные волокна у новорожденных, в отличие от взрослых, представляют собой единую систему. Полагаем, что с возрастом в связи с созреванием и разрастанием элементов поясничного утолщения, связанных, в первую очередь, с локомоторной функцией, происходит перестройка этой непрерывной системы волокон с выделением локальных элементов, таких как ядра Кларка и Штиллинга. Единственными спинальными нейронами, маркированными парвальбумином у новорожденных, являются премоторные интернейроны, расположенные вдоль курватуры пластины IX. Для этих клеток характерно полное или частичное отсутствие экспрессии нейронального белка NeuN, что свидетельствует об особенностях нейрохимического статуса таких нейронов.
- Ключевые слова
- кальций-связывающий белок парвальбумин спинной мозг спинно-мозжечковые тракты ядро Кларка ядро Штиллинга
- Дата публикации
- 15.05.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 8
Библиография
- 1. Sherrington CS, Laslett EE (1903) Observations on some spinal reflexes and the interconnection of spinal segments. J Physiol 29:58–96. https://doi.org/10.1113/jphysiol.1903.sp000946
- 2. Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81:539–568. https://doi.org/ 10.1152/physrev.2001.81.2.539
- 3. Niu J, Ding L, Li JJ, Kim H, Liu J, Li H, Moberly A, Badea TC, Duncan ID, Son Y-J, Scherer SS, Luo W (2013) Modality-based organization of ascending somatosen sory axons in the direct dorsal column pathway. J Neurosci 33:17691–17709. https://doi.org/ 10.1523/JNEUROSCI.3429-13.2013
- 4. Matsushita M, Yaginuma H (1989) Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 288:19–38. https://doi.org/ 10.1002/cne.902880103
- 5. Stecina K, Fedirchuk B, Hultborn H (2013) Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J Physiol 591:5433–5443. https://doi.org/ 10.1113/jphysiol.2012.249110
- 6. Shrestha SS, Bannatyne BA, Jankowska E, Hammar I, Nilsson E, Maxwell DJ (2012) Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. J Physiol 590:1737–1755. https://doi.org/ 10.1113/jphysiol.2011.226852
- 7. Clarke JAL (1997) Further researches on the grey substance of the spinal cord. Philos Trans R Soc Lond 149:437–467. https://doi.org/ 10.1098/rstl.1859.0022
- 8. Hogg ID (1944) The development of the nucleus dorsalis (Clarke’s column). J Comp Neurol 81:69–95. https://doi.org/ 10.1002/cne.900810105
- 9. Matsushita M, Hosoya Y (1979) Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Res 173:185–200. https://doi.org/ 10.1016/0006-8993(79)90620-6
- 10. Molander C, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 230:133–141. https://doi.org/ 10.1002/cne.902300112
- 11. Akopians A, Runyan SA, Phelps PE (2003) Expression of L1 decreases during postnatal development of rat spinal cord. J Comp Neurol 467:375–388. https://doi.org/ 10.1002/cne.10956
- 12. Edgley SA, Grant GM (1991) Inputs to spinocerebellar tract neurones located in https://doi.org/ 10.1002/cne.903050112
- 13. Sengul G, Watson C, Tanaka I, Paxinos G (2012) Atlas of the spinal cord: mouse, rat, rhesus, marmoset, and human. Elsevier Science
- 14. Mott F (1888) Microscopical examination of Clarke’s column in man, the monkey, and the dog. J Anat Physiol 22:479–495
- 15. Snyder RL, Faull RL, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. J Comp Neurol 181:833–852. https://doi.org/ 10.1002/cne.901810409
- 16. Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184:81–106. https://doi.org/ 10.1002/cne.901840106
- 17. Ha H, Liu CN (1968) Cell origin of the ventral spinocerebellar tract. J Comp Neurol 133:185–206. https://doi.org/ 10.1002/cne.901330204
- 18. Xu Q, Grant G (1988) Collateral projections of neurons from the lower part of the spinal cord to anterior and posterior cerebellar termination areas. A retrograde fluorescent double labeling study in the cat. Exp Brain Res 72:562–576. https://doi.org/ 10.1007/BF00250601
- 19. Petras JM, Cummings JF (1977) The origin of spinocerebellar pathways. II. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord. J Comp Neurol 173:693–716. https://doi.org/ 10.1002/cne.901730405
- 20. Zhang Y, Luo Y, Sasamura K, Sugihara I (2021) Single axonal morphology reveals high heterogeneity in spinocerebellar axons originating from the lumbar spinal cord in the mouse. J Comp Neurol 529:3893–3921. https://doi.org/ 10.1002/cne.25223
- 21. Cooper S, Sherrington CS (1940) Gower’s tract and spinal border cells. Brain 63:123–134. https://doi.org/ 10.1093/brain/63.2.123
- 22. Sprague JM (1953) Spinal border cells and their role in postural mechanism (Schiff-Sherrington phenomenon). J Neurophysiol 16:464–474. https://doi.org/ 10.1152/jn.1953.16.5.464
- 23. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475. https://doi.org/ 10.1016/0306-4522(90)90091-h
- 24. Ren K, Ruda MA (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Rev 19:163–179. https://doi.org/ 10.1016/0165-0173(94)90010-8
- 25. Clowry GJ, Arnott GA, Clement-Jones M, Fallah Z, Gould S, Wright C (2000) Changing pattern of expression of parvalbumin immunoreactivity during human fetal spinal cord development. J Comp Neurol 423:727–735
- 26. Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci 13:1233–1239. https://doi.org/ 10.1038/nn.2637
- 27. John A, Brylka H, Wiegreffe C, Simon R, Liu P, Jüttner R, Crenshaw EB, Luyten FP, Jenkins NA, Copeland NG, Birchmeier C, Britsch S (2012) Bcl11a is required for neuronal morphogenesis and sensory circuit formation in dorsal spinal cord development. Dev Camb Engl 139:1831–1841. https://doi.org/ 10.1242/dev.072850
- 28. Dallman MA, Ladle DR (2013) Quantitative analysis of locomotor defects in neonatal mice lacking proprioceptive feedback. Physiol Behav 120:97–105. https://doi.org/ 10.1016/j.physbeh.2013.07.005
- 29. Ni Y, Nawabi H, Liu X, Yang L, Miyamichi K, Tedeschi A, Xu B, Wall NR, Callaway EM, He Z (2014) Characterization of long descending premotor propriospinal neurons in the spinal cord. J Neurosci 34:9404–9417. https://doi.org/ 10.1523/JNEUROSCI.1771-14.2014
- 30. Zhang JH, Morita Y, Hironaka T, Emson PC, Tohyama M (1990) Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia. J Comp Neurol 302:715–728. https://doi.org/ 10.1002/cne.903020404
- 31. Clowry GJ, Fallah Z, Arnott G (1997) Developmental expression of parvalbumin by rat lower cervical spinal cord neurones and the effect of early lesions to the motor cortex. Dev Brain Res 102:197–208. https://doi.org/ 10.1016/s0165-3806(97)00098-9
- 32. Veshchitskii A, Shkorbatova P, Merkulyeva N (2022) Neurochemical atlas of the cat spinal cord. Front Neuroanat 16:1034395. https://doi.org/ 10.3389/fnana.2022.1034395
- 33. Veshchitskii A, Musienko P, Merkulyeva N (2023) Distribution of parvalbumin-expressing neuronal populations in the cat cervical and lumbar spinal cord gray matter. J Evol Biochem Physiol 59(4): 1100–1111.
- 34. Aoyama M, Hongo T, Kudo N (1988) Sensory input to cells of origin of uncrossed spinocerebellar tract located below Clarke’s column in the cat. J Physiol 398:233–257. https://doi.org/ 10.1113/jphysiol.1988.sp017040
- 35. Matsushita M (1988) Spinocerebellar projections from the lowest lumbar and sacral-caudal segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 274:239–254. https://doi.org/ 10.1002/cne.902740208
- 36. Fu Y, Sengul G, Paxinos G, Watson C (2012) The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse. Neurosci Lett 518:161–166. https://doi.org/ 10.1016/j.neulet.2012.05.002
- 37. Merkulyeva N, Mikhalkin A, Zykin P (2018) Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats. Cell Mol Neurobiol 38:1137–1143. https://doi.org/ 10.1007/s10571-018-0585-6
- 38. Mikhalkin A, Nikitina N, Merkulyeva N (2021) Heterochrony of postnatal accumulation of nonphosphorylated heavy-chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 529:1430–1441. https://doi.org/ 10.1002/cne.25028
- 39. Merkulyeva N, Mikhalkin A (2024) Transient expression of heavy-chain neurofilaments in the perigeniculate nucleus of cats. Brain Struct Funct. https://doi.org/ 10.1007/s00429-023-02752-6
- 40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/ 10.1038/nmeth.2019
- 41. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Dev Camb Engl 116:201–211. https://doi.org/ 10.1242/dev.116.1.201
- 42. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379. https://doi.org/ 10.1002/cne.901000205
- 43. Réthelyi M, Szentágothai J (1973) Distribution and connections of afferent fibres in the spinal cord. In: Iggo A (ed) Somatosensory System. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 207–252
- 44. Chakrabarty S, Shulman B, Martin JH (2009) Activity-dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord. J Neurosci 29:8816–8827. https://doi.org/ 10.1523/JNEUROSCI.0735-09.2009
- 45. Knyihár-Csillik E, Rakic P, Csillik B (1999) Illusive transience of parvalbumin expression during embryonic development of the primate spinal cord. Int J Dev Neurosci 17:79–97. https://doi.org/ 10.1016/s0736-5748(98)00090-2
- 46. Siembab VC, Smith CA, Zagoraiou L, Berrocal MC, Mentis GZ, Alvarez FJ (2010) Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells. J Comp Neurol 518:4675–4701. https://doi.org/ 10.1002/cne.22441
- 47. Floyd TL, Dai Y, Ladle DR (2018) Characterization of calbindin D28k expressing interneurons in the ventral horn of the mouse spinal cord. Dev Dyn 247:185–193. https://doi.org/ 10.1002/dvdy.24601
- 48. Alekseeva OS, Gusel’nikova VV, Beznin GV, Kor zhevskii DE (2015) Prospects for the application of the NeuN nuclear protein as a marker of the functional state of nerve cells in vertebrates. J Evol Biochem Physiol 51(5): 357–369.
- 49. Shneider NA, Brown MN, Smith CA, Pickel J, Alvarez FJ (2009) Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Develop 4:42. https://doi.org/ 10.1186/1749-8104-4-42
- 50. Taylor A, Ellaway PH, Durbaba R (1999) Why are there three types of intrafusal muscle fibers? Prog Brain Res 123:121–131. https://doi.org/ 10.1016/s0079-6123(08)62849-6
- 51. Merkulyeva N, Mikhalkin A, Nikitina N (2020) Characteristics of the neurochemical state of neurons in the mesencephalic nucleus of the trigeminal nerve in cats. Neurosci Behav Physiol 50(4): 511–515.